Numerical Computation via Inference

Gaussian Processes and Multiscale Methods

Yifan Chen, Caltech

Advisors:

Thomas Hou, Houman Owhadi, and Andrew Stuart

PhD Candidacy Talk, May 2022

Roadmap

1 Motivation

- Model based versus data driven?
- - The methodology and algorithm
 - Efficiency: sparse Cholesky factorization
 - Theoretical foundation: consistency and kernel learning
 - Connection to traditional methods and beyond
- - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

When I Came to Caltech to Study

Applied and computational math research

- Model Based: ODEs/SDEs/PDEs, physics, numerical analysis, ...
- Data Driven: machine learning, optimization, statistics, ...

"Now and Future: Model + Data!"

Model Computation: Computing with Partial Information

Numerical algorithms designed to use IC/BC/RHS data wisely

- Finite difference/element/volume
- Spectral methods
- Boundary integral methods
- Meshless methods, collocation methods
- Multiscale methods, numerical homogenization, ...

Inference and ML to automate numerical computation

- Gaussian process (GP) and kernel methods for numerical integration
- GPs and kernel methods for ODEs, linear PDEs
- Information based complexity
- Bayes probabilistic numerics, Bayes numerical analysis, UQ
- Physics informed ML (Deep Ritz methods, PINNs, SDEs...)
- Operator learning (Kernels, Neural Operators, DeepONets), ...

My PhD Wondering: Computation via Inference

Solving PDEs, surrogate models, inverse problems, via inference

The question: How to transform a given model based computational question wisely to data science inference question?

Two Stories

1. Bayes based Gaussian processes approaches

 Interpretable, rigorous and unified framework for solving PDEs and inverse problems

Solving and learning PDEs as a Bayes inference problem

- 2. Approximation based multiscale methods
 - Exponentially convergent multiscale approximation for rough elliptic PDEs and Helmholtz equations

Multiscale ideas lead to exponentially efficient inference

Roadmap

1 Motivation

Model based versus data driven?

2 Gaussian processes for nonlinear PDEsThe methodology and algorithm

- Efficiency: sparse Cholesky factorization
- Theoretical foundation: consistency and kernel learning
- Connection to traditional methods and beyond
- 3 Exponentially convergent multiscale methods
 - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

A nonlinear elliptic PDE Example

Consider the stationary elliptic PDE

$$\begin{cases} -\Delta u(\mathbf{x}) + \tau(u(\mathbf{x})) = f(\mathbf{x}), & \forall \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), & \forall \mathbf{x} \in \partial\Omega. \end{cases}$$

Domain
$$\Omega \subset \mathbb{R}^d$$
.
PDE data $f, g: \Omega \to \mathbb{R}$.

PDE has a unique strong/classical solution u^{\star} .

A Nonlinear Elliptic PDE: The Methodology¹

1 Choose a kernel $K:\overline{\Omega}\times\overline{\Omega}\to\mathbb{R}$

 \blacksquare Corresponding RKHS ${\mathcal U}$ with norm $\|\cdot\|$

2 Choose some collocation points

$$X^{\text{int}} = \{ \mathbf{x}_1^{\text{int}}, \dots, \mathbf{x}_{M^{\text{int}}}^{\text{int}} \} \subset \Omega$$
$$X^{\text{bd}} = \{ \mathbf{x}_1^{\text{bd}}, \dots, \mathbf{x}_{M^{\text{bd}}}^{\text{bd}} \} \subset \partial\Omega$$

3 Solve the optimization problem

$$\begin{cases} \underset{u \in \mathcal{U}}{\text{minimize } \|u\|} \\ \text{s.t.} \quad -\Delta u(\mathbf{x}_m) + \tau(u(\mathbf{x}_m)) = f(\mathbf{x}_m), & \text{for } \mathbf{x}_m \subset X^{\text{int}} \\ u(\mathbf{x}_n) = g(\mathbf{x}_n), & \text{for } \mathbf{x}_n \subset X^{\text{bd}} \end{cases}$$

Generalization of RBF collocation methods and boundary integral methods (BIM)

¹Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. "Solving and learning nonlinear pdes with gaussian processes". In: *Journal of Computational Physics* (2021).

Yifan Chen, Caltech

Bayes Inference Interpratation of the Methodology

1 Choose a kernel $K: \overline{\Omega} \times \overline{\Omega} \to \mathbb{R}$ (Choose the prior $\mathcal{GP}(0, K)$) Corresponding RKHS \mathcal{U} with norm $\|\cdot\|$ 2 Choose some collocation points (Choose the data/likelihood) $X^{\text{int}} = \{\mathbf{x}_1^{\text{int}}, \dots, \mathbf{x}_{M^{\text{int}}}^{\text{int}}\} \subset \Omega$ $X^{\text{bd}} = \{\mathbf{x}_1^{\text{bd}}, \dots, \mathbf{x}_{A^{\text{bd}}}^{\text{bd}}\} \subset \partial\Omega$ 3 Solve the optimization problem (Find the "MAP") $\begin{cases} \underset{u \in \mathcal{U}}{\text{minimize } \|u\|} \\ \text{s.t.} \quad -\Delta u(\mathbf{x}_m) + \tau(u(\mathbf{x}_m)) = f(\mathbf{x}_m), & \text{for } \mathbf{x}_m \subset X^{\text{int}} \\ u(\mathbf{x}_n) = g(\mathbf{x}_n), & \text{for } \mathbf{x}_n \subset X^{\text{bd}} \end{cases}$

Generalize linear PDEs setting in Bayes probabilistic numerical methods²

²Jon Cockayne, Chris J Oates, Timothy John Sullivan, and Mark Girolami. "Bayesian probabilistic numerical methods". In: *SIAM Review* 61.4 (2019), pp. 756–789.

Yifan Chen, Caltech

How to Solve: Introducing Slack Variables

$$\begin{cases} \underset{u \in \mathcal{U}}{\operatorname{minimize}} \|u\| \\ \text{s.t.} & -\Delta u(\mathbf{x}_m) + u(\mathbf{x}_m)^3 = f(\mathbf{x}_m), \text{ for } \mathbf{x}_m \subset X^{\operatorname{int}} \\ & u(\mathbf{x}_n) = g(\mathbf{x}_n), \text{ for } \mathbf{x}_n \subset X^{\operatorname{bd}} \\ & \updownarrow (N = M^{\operatorname{bd}} + 2M^{\operatorname{int}}) \\ & & \begin{pmatrix} \min_{u \in \mathcal{U}} \|u\| \\ \text{s.t.} & u(X^{\operatorname{bd}}) = \mathbf{z}^{\operatorname{bd}} \\ & u(X^{\operatorname{int}}) = \mathbf{z}^{\operatorname{int}} \\ & \Delta u(X^{\operatorname{int}}) = \mathbf{z}^{\operatorname{int}} \\ & \text{s.t.} & -\mathbf{z}_{\Delta}^{\operatorname{int}} + \tau(\mathbf{z}^{\operatorname{int}}) = f(X^{\operatorname{int}}) \\ & & \mathbf{z}^{\operatorname{bd}} = g(X^{\operatorname{bd}}) \end{cases} \end{cases} \end{cases}$$

How to Solve: Inner optimization

• The inner problem is linear $\begin{array}{l} \underset{u \in \mathcal{U}}{\text{minimize }} \|u\|\\ \text{s.t. } u(X^{\text{bd}}) = \mathbf{z}^{\text{bd}}, u(X^{\text{int}}) = \mathbf{z}^{\text{int}}, \Delta u(X^{\text{int}}) = \mathbf{z}^{\text{int}}_{\Delta} \end{array}$

• Measurement vector $\phi := (\delta_{X^{\mathrm{bd}}}, \delta_{X^{\mathrm{int}}}, \delta_{X^{\mathrm{int}}} \circ \Delta) \in (\mathcal{U}^*)^{\otimes N}$

Kernel vector and matrix

$$\begin{split} K(\mathbf{x}, \boldsymbol{\phi}) &= \left(K(\mathbf{x}, X^{\mathsf{bd}}), K(\mathbf{x}, X^{\mathsf{int}}), \Delta_{\mathbf{y}} K(\mathbf{x}, X^{\mathsf{int}}) \right) \in \mathbb{R}^{N} \\ K(\boldsymbol{\phi}, \boldsymbol{\phi}) &= \\ \begin{pmatrix} K(X^{\mathsf{bd}}, X^{\mathsf{bd}}) & K(X^{\mathsf{bd}}, X^{\mathsf{int}}) & \Delta_{\mathbf{y}} K(X^{\mathsf{bd}}, X^{\mathsf{int}}) \\ K(X^{\mathsf{int}}, X^{\mathsf{bd}}) & K(X^{\mathsf{int}}, X^{\mathsf{int}}) & \Delta_{\mathbf{y}} K(X^{\mathsf{int}}, X^{\mathsf{int}}) \\ \Delta_{\mathbf{x}} K(X^{\mathsf{int}}, X^{\mathsf{bd}}) & \Delta_{\mathbf{x}} K(X^{\mathsf{int}}, X^{\mathsf{int}}) & \Delta_{\mathbf{x}} \Delta_{\mathbf{y}} K(X^{\mathsf{int}}, X^{\mathsf{int}}) \end{pmatrix} \in \mathbb{R}^{N \times N} \end{split}$$

Minimizer $u(\mathbf{x}) = K(\mathbf{x}, \boldsymbol{\phi})K(\boldsymbol{\phi}, \boldsymbol{\phi})^{-1}\mathbf{z}$

How to Solve: Representation of the Minimizer

Combine the two level optimization:

 $\label{eq:constraint} \begin{array}{l} \mbox{Representer theorem} \\ \mbox{Every minimizer } u^{\dagger} \mbox{ can be represented as} \\ u^{\dagger}(\mathbf{x}) = K(\mathbf{x}, \phi) K(\phi, \phi)^{-1} \mathbf{z}^{\dagger}, \\ \mbox{where the vector } \mathbf{z}^{\dagger} \in \mathbb{R}^{N} \mbox{ is a minimizer of} \\ \left\{ \begin{array}{ll} \min_{\mathbf{z} \in \mathbb{R}^{N}} & \mathbf{z}^{T} K(\phi, \phi)^{-1} \mathbf{z} \\ \mbox{s.t.} & F(\mathbf{z}) = \mathbf{y} \end{array} \right. \end{array}$

 \blacksquare Function $F:\mathbb{R}^N\to\mathbb{R}^M$ depends on PDE collocation constraints

 ${\ensuremath{\,\bullet\,}} \ensuremath{\,\mathbf{y}}$ contains PDE boundary and RHS data

Quadratic optimization with nonlinear constraints

 \blacksquare A simple linearization algorithm $\mathbf{z}^k \rightarrow \mathbf{z}^{k+1}$

$$\begin{cases} \min_{\mathbf{z} \in \mathbb{R}^N} & \mathbf{z}^T K(\boldsymbol{\phi}, \boldsymbol{\phi})^{-1} \mathbf{z} \\ \text{s.t.} & F(\mathbf{z}^k) + F'(\mathbf{z}^k)(\mathbf{z} - \mathbf{z}^k) = \mathbf{y}. \end{cases}$$

"Newton's iteration for the nonlinear PDE"

Poor conditioning of $K(\phi, \phi)$, and scale imbalance between blocks Adding scale-aware regularization $K(\phi, \phi) + \lambda \text{diag}(K(\phi, \phi))$

Numerical Experiments

■ Nonlinear Elliptic Equation, $\tau(u) = u^3$

$$\begin{cases} -\Delta u(\mathbf{x}) + \tau(u(\mathbf{x})) = f(\mathbf{x}), & \forall \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), & \forall \mathbf{x} \in \partial \Omega. \end{cases}$$

• Truth: d = 2, $u^*(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) + 4 \sin(4\pi x_1) \sin(4\pi x_2)$ • Kernel: $K(\mathbf{x}, \mathbf{y}; \sigma) = \exp\left(-\frac{|\mathbf{x}-\mathbf{y}|^2}{2\sigma^2}\right)$

Figure: $N_{\text{domain}} = 900, N_{\text{boundary}} = 124$

Convergence Study

- \blacksquare For $\tau(u)=0, u^3,$ use Gaussian kernel with lengthscale σ
- L^2, L^∞ accuracy, compared with Finite Difference (FD)

Figure: Convergence of the kernel method is fast, since the solution is smooth

Time dependent viscous Burgers equation

- Spatio-temporal GPs approach
- Time discretization + spatial GPs: causality considered

Inverse problem: Darcy flow

- PDE data + observation data treated in the same manner
- Solving PDEs and inverse problems in a unified algorithmic framework

Roadmap

1 Motivation

Model based versus data driven?

2 Gaussian processes for nonlinear PDEs

- The methodology and algorithm
- Efficiency: sparse Cholesky factorization
- Theoretical foundation: consistency and kernel learning
- Connection to traditional methods and beyond
- 3 Exponentially convergent multiscale methods
 - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

Sparse Cholesky Factorization for Ordinary Kernel Matrice

Sparse Cholesky factor for kernel matrices under coarse to fine ordering³

Coarse to fine: max-min ordering

$$x_k = \operatorname{argmax}_{x_i} d(x_i, \{x_j, 1 \le j < k\})$$

with lengthscale $l_k = d(x_k, \{x_j, 1 \le j < k\})$

³F Schäfer, TJ Sullivan, and H Owhadi. "Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity". In: *Multiscale Modeling & Simulation* 19.2 (2021), pp. 688–730.

Yifan Chen, Caltech

Computation via Inference

Why Sparse? Cholesky Factors and Screening Effects

Let
$$\Theta \in \mathbb{R}^{d \times d}$$
, $\Theta_{ij} = k(x_i, x_j)$, and $X \sim \mathcal{N}(0, \Theta)$

• Cholesky factor of the covariance matrix $\Theta = L L^T$

$$\frac{L_{ij}}{L_{jj}} = \frac{\text{Cov}[X_i, X_j | X_{1:j-1}]}{\text{Var}[X_j | X_{1:j-1}]} \qquad (i \ge j)$$

• Cholesky factor of the precision matrix $\Theta^{-1} = UU^T$

$$\frac{U_{ij}}{U_{jj}} = (-1)^{i \neq j} \frac{\text{Cov}[X_i, X_j | X_{1:j-1 \setminus \{i\}}]}{\text{Var}[X_j | X_{1:j-1 \setminus \{i\}}]} \qquad (i \leq j)$$

Screening effects: $x_{1:j}$ ordered from coarse to fine; scale of x_j is l_j , then for certain kernel arsing from PDEs⁵

$$\operatorname{Cov}[X_i, X_j | X_{1:j-1}] \lesssim \exp\left(-\frac{d(x_i, x_j)}{l_j}\right)$$

⁴Michael L Stein. "The screening effect in kriging". In: *Annals of statistics* 30.1 (2002), pp. 298–323.

⁵Schäfer, Sullivan, and Owhadi, "Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity".

Yifan Chen, Caltech

Computation via Inference

Screening Effects with PDE measurements

Recall the kernel matrices

$$\begin{pmatrix} K(X^{\mathrm{bd}}, X^{\mathrm{bd}}) & K(X^{\mathrm{bd}}, X^{\mathrm{int}}) & \Delta_{\mathbf{y}} K(X^{\mathrm{bd}}, X^{\mathrm{int}}) \\ K(X^{\mathrm{int}}, X^{\mathrm{bd}}) & K(X^{\mathrm{int}}, X^{\mathrm{int}}) & \Delta_{\mathbf{y}} K(X^{\mathrm{int}}, X^{\mathrm{int}}) \\ \Delta_{\mathbf{x}} K(X^{\mathrm{int}}, X^{\mathrm{bd}}) & \Delta_{\mathbf{x}} K(X^{\mathrm{int}}, X^{\mathrm{int}}) & \Delta_{\mathbf{x}} \Delta_{\mathbf{y}} K(X^{\mathrm{int}}, X^{\mathrm{int}}) \end{pmatrix}$$

How to order when there are derivative measurements?

- Order pointwise measurements from coarse to fine
- PDE measurements follow behind (with the same ordering)

Theorem: screening effects hold for such ordering⁶

Theory: need technical assumptions

• The kernel is the Green function of some differential operator $\mathcal{L}: H_0^s(\Omega) \to H^{-s}(\Omega)$

Practice: works more generally

⁶Yifan Chen, Florian Schaefer, and Houman Owhadi. "Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes". In preparation.

Yifan Chen, Caltech

Computation via Inference

Candidacy Talk 18/38

Near Linear Complexity by Sparse Cholesky

- Ignore correlation beyond $d(x, x_j) \ge \rho l_j$ (which is $O(\exp(-\rho))$)
- Once ordering and sparsity pattern determined, use KL minimization algorithm⁷: $O(N\rho^d)$ memory and $O(N\rho^{2d})$ time

Figure: Run 3 GN iterations. Accuracy floor due to finite ρ and regularization

⁷Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. "Sparse Cholesky Factorization by Kullback–Leibler Minimization". In: *SIAM Journal on Scientific Computing* 43.3 (2021), A2019–A2046.

Yifan Chen, Caltech

Computation via Inference

Roadmap

1 Motivation

Model based versus data driven?

2 Gaussian processes for nonlinear PDEs

- The methodology and algorithm
- Efficiency: sparse Cholesky factorization
- Theoretical foundation: consistency and kernel learning
- Connection to traditional methods and beyond
- 3 Exponentially convergent multiscale methods
 - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

Theoretical Foundation: Consistency

Consistency of the minimizer

$$\begin{cases} \min_{u \in \mathcal{U}} & \|u\|\\ \text{s.t.} & \mathsf{PDE} \text{ constraints at } \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \in \overline{\Omega}. \end{cases}$$

Convergence theory

K is chosen so that
U ⊆ H^s(Ω) for some s > s* where s* = d/2 + order of PDE.
u* ∈ U.
Fill distance of {x₁,..., x_M} → 0 as M → ∞.
Then as M → ∞, u[†] → u* pointwise in Ω and in H^t(Ω) for t ∈ (s*, s).

Theoretical Foundation: Kernel Learning

Bayes approach built in GPs: e.g. Empirical Bayes (EB)

$$\theta^{\text{EB}} = \underset{\theta}{\operatorname{argmin}} \| u^{\dagger}(\cdot, X, \theta) \|_{K_{\theta}}^{2} + \log \det K_{\theta}(X, X)$$

where, $u^{\dagger}(\cdot, X, \theta)$ is the solution using collocation points X and kernel K_{θ} , and $\|\cdot\|_{K_{\theta}}$ is the RKHS norm for the kernel K_{θ} • Kernel Flow (KF)⁸: a variant of cross-validation

$$\theta^{\mathrm{KF}} = \underset{\theta}{\operatorname{argmin}} \ \mathbb{E}_{\pi} \frac{\|u^{\dagger}(\cdot, X, \theta) - u^{\dagger}(\cdot, \pi X, \theta)\|_{K_{\theta}}^{2}}{\|u^{\dagger}(\cdot, X, \theta)\|_{K_{\theta}}^{2}}$$

where, πX is a subsampling of X

Consistency and robustness of EB and KF for learning Matérn-like kernels: both has large data limit, EB optimal while KF robust⁹

⁸Houman Owhadi and Gene Ryan Yoo. "Kernel flows: From learning kernels from data into the abyss". In: *Journal of Computational Physics* 389 (2019), pp. 22–47.

⁹Yifan Chen, Houman Owhadi, and Andrew Stuart. "Consistency of empirical Bayes and kernel flow for hierarchical parameter estimation". In: *Mathematics of Computation* (2021).

Yifan Chen, Caltech

Roadmap

1 Motivation

Model based versus data driven?

2 Gaussian processes for nonlinear PDEs

- The methodology and algorithm
- Efficiency: sparse Cholesky factorization
- Theoretical foundation: consistency and kernel learning

Connection to traditional methods and beyond

- 3 Exponentially convergent multiscale methods
 - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

What so far

PDEs treated as nonlinear combination of linear differential measurement data of a GP, then solved via inference of the GP (MAP estimator)

- Framework: choose the GP prior, choose the data, then inference
- MAP estimator: generalization of RBF collocation methods and BIM
- Efficient algorithm, theoretical consistency, parameter learning

Potential issue in the prior choice

Kernel selection unrelated to the specific PDE

Potential issue in the data choice

Collocation methods, require strong solution

A Linear Rough Elliptic PDE Example

For
$$a \in L^{\infty}(\Omega), f \in L^{2}(\Omega)$$
:
$$\begin{cases} -\nabla \cdot (a \nabla u) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Choose kernel K, apply the methodology:

$$\begin{cases} \underset{u \in \mathcal{U}}{\operatorname{minimize}} \|u\|\\ \text{s.t.} \quad -\nabla \cdot (a\nabla u)(\mathbf{x}_m) = f(\mathbf{x}_m), & \text{for } \mathbf{x}_m \subset X^{\mathsf{int}}\\ u(\mathbf{x}_n) = 0, & \text{for } \mathbf{x}_n \subset X^{\mathsf{bd}} \end{cases}$$

Not work, since $u \in H_0^1(\Omega)$ only

The collocation data we formulate from the PDE is not appropriate!

- **1** Choose the prior $\mathcal{GP}(0, K)$
- 2 Choose the data from the computational problem
- **3** Find the "MAP" / optimal recovery

```
\begin{cases} \min_{u \in \mathcal{U}} \|u\| \\ \text{s.t. Data of } u \end{cases}
```

Choose kernel K that satisfies BC, and choose $\psi_i \in H^1_0(\Omega), 1 \leq i \leq N$

$$\begin{cases} \underset{u \in \mathcal{U}}{\text{minimize }} \|u\|\\ \text{s.t.} \quad \langle \nabla \psi_i, a \nabla u \rangle = \langle \psi_i, f \rangle \text{ for } 1 \leq i \leq N \end{cases}$$

If K is the Green function¹⁰ of $-\nabla \cdot (a\nabla \cdot)$, then apply Lagrangian dual:

$$-\min_{v\in \mathsf{span}\{\psi_i,1\leq i\leq N\}}\left(\frac{1}{2}\langle \nabla v,a\nabla v\rangle-\langle v,f\rangle\right)$$

Recover Galerkin methods using basis functions $\psi_i, 1 \leq i \leq N$

 10 If $d>1,\,\mathcal{U}$ is the more general Cameron-Martin space rather than RKHS

Choose Weak Data Dependent on the Green Function

If choosing

 $\operatorname{span}\{\psi_i, 1 \le i \le N\} = \left(-\nabla \cdot (a\nabla \cdot)\right)^{-1} \operatorname{span}\{\phi_i, 1 \le i \le N\}$

Then the equivalent inference problem becomes a simple one

$$\begin{cases} \underset{u \in \mathcal{U}}{\min i u \in \mathcal{U}} \|u\| \\ \text{s.t.} \quad \langle \phi_i, u \rangle \text{ known, for } 1 \leq i \leq N \end{cases}$$

Some incomplete literature:

- ϕ_i finite element function of local support $O(H)^{11}$
- ϕ_i piecewise constant function of local support $O(H)^{12}$

Accuracy: O(H) in $H^1_a(\Omega)$ norm

Localization: ψ_i can be localized of size $O(H \log(1/H))$

¹¹Axel Målqvist and Daniel Peterseim. "Localization of elliptic multiscale problems". In: *Mathematics of Computation* 83.290 (2014), pp. 2583–2603.

¹²Houman Owhadi. "Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games". In: *SIAM Review* 59.1 (2017), pp. 99–149.

Yifan Chen, Caltech

Possibility: Subsampled Measurement Functions?

Subsampled measurements: $\phi_i^{h,H}$ supported in $\omega_i^{h,H}$

The middle between Diracs (h = 0) and h = H

Accuracy and Localization for Subsampled Data

Approximation accuracy¹³: $O(H\rho_d(\frac{H}{h}))$ in the $H^1_a(\Omega)$ norm

$$\rho_d(t) = \begin{cases} 1, & d < 2\\ \sqrt{\log(1+t)}, & d = 2\\ t^{\frac{d-2}{2}}, & d > 2 \end{cases}$$

Localization^{14}: exponential decay rate of $\psi_i^{h,H}$ exhibits non-monotone behavior regarding h

A trade-off between approximation and localization: ratio h/H matters

¹³Yifan Chen and Thomas Y Hou. "Function approximation via the subsampled Poincaré inequality". In: *Discrete & Continuous Dynamical Systems* 41.1 (2021), p. 169.

¹⁴Yifan Chen and Thomas Y Hou. "Multiscale elliptic PDE upscaling and function approximation via subsampled data". In: *Multiscale Modeling & Simulation* 20.1 (2022), pp. 188–219.

Yifan Chen, Caltech

Numerical Examples

Summary for now

Solving PDEs from GP inference perspectives

Choose prior:

- Parametric kernel + kernel learning
- Green function as the kernel

Choose data:

- Collocation data
- Weak form data

Question: convergence rates, i.e. inference efficiency?

- Depend on the smoothness of the solution
- Usually algebraic, unless the solution is smooth

Can we choose the data more thoughtfully to get exponential convergence, even for nonsmooth solution?

Roadmap

1 Motivation

- Model based versus data driven?
- 2 Gaussian processes for nonlinear PDEs
 - The methodology and algorithm
 - Efficiency: sparse Cholesky factorization
 - Theoretical foundation: consistency and kernel learning
 - Connection to traditional methods and beyond

3 Exponentially convergent multiscale methods

- Coarse and fine scale decomposition
- Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

- $\label{eq:consider Hemholtz equation} \begin{array}{l} \bullet \ \mbox{Consider Hemholtz equation} \\ -\nabla \cdot (a \nabla u) k^2 u = f \end{array}$
- Local decomposition: mesh size H = O(1/k), in each T, $u = u_T^h + u_T^b$

Global function: $u^{h}(x) = u^{h}_{T}(x), u^{b}(x) = u^{b}_{T}(x)$ when $x \in T$ for each T

 $x \in \mathcal{N}_H, e \in \mathcal{E}_H, T \in \mathcal{T}_H$

1

 x_{\perp}^{\dagger}

Coarse-fine decomposition:
 u = u^h + u^b
 u^h coarse part, u^b fine part

Stick to Case k = 0 and Dirichlet BC for Simplicity

Coarse and fine scale space

• $u = u^{h} + u^{b} \in V^{h} \oplus_{a} V^{b}$ $V^{h} = \{v \in H_{0}^{1}(\Omega) : -\nabla \cdot (a\nabla v) = 0 \text{ in every } T \in \mathcal{T}_{H}\}$ $V^{b} = \{v \in H_{0}^{1}(\Omega) : v = 0 \text{ on } \partial T, \text{ for every } T \in \mathcal{T}_{H}\}$

$$H^1_0(\Omega) = V^{\mathsf{h}} \oplus_a V^{\mathsf{b}}$$

- Fine scale part u^{b} solved locally
- \blacksquare Coarse scale part $u^{\rm h}$ depends on edge values of u

Recall the inference framework: How to get data of u^h ? Choose test function $\psi \in V^h$, then

$$\langle \psi, f \rangle = \langle \nabla \psi, a \nabla u \rangle = \langle \nabla \psi, a \nabla u^{\mathsf{h}} \rangle$$

This is a measurement of u^{h}

Roadmap

1 Motivation

- Model based versus data driven?
- 2 Gaussian processes for nonlinear PDEs
 - The methodology and algorithm
 - Efficiency: sparse Cholesky factorization
 - Theoretical foundation: consistency and kernel learning
 - Connection to traditional methods and beyond

3 Exponentially convergent multiscale methods

- Coarse and fine scale decomposition
- Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

How to approximate u^{h} using basis functions?

Theorem $(d = 2)^{15}$ ¹⁶

On a mesh of size H = O(1/k), there exist c_i, d_i such that

$$u^{\mathsf{h}} = \sum_{i \in I_1} c_i \psi_i^{\text{MsFEM}} + \sum_{i \in I_2} d_i \psi_i^{\text{Edge}} + O\left(\exp\left(-m^{\frac{1}{d+1}-\epsilon}\right)\right)$$

where the approximation is in the energy norm, and

• ψ_i^{MsFEM} is the MsFEM basis with linear BC $\#I_1 = O(1/H^2)$ • ψ_i^{Edge} computed by solving local equation and spectral problems $\#I_2 = O(2m/H^2)$

 16 Yifan Chen, Thomas Y Hou, and Yixuan Wang. "Exponential convergence for multiscale linear elliptic PDEs via adaptive edge basis functions". In: *Multiscale Modeling & Simulation* 19.2 (2021), pp. 980–1010.

Yifan Chen, Caltech

¹⁶Yifan Chen, Thomas Y Hou, and Yixuan Wang. "Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations". In: *arXiv* preprint *arXiv*:2105.04080 (2021).

The Detailed Approximation (For Elliptic Case)

 Interpolation: u^h - I_Hu^h vanishes on edge nodes where: I_H: piecewise linear interpolation on the edge (MsFEM) Put those interpolation functions into basis functions

2 Oversampling: $e \subset \omega_e$, then on e,

$$(u^{\mathsf{h}} - I_H u^{\mathsf{h}})|_e = (u - I_H u)|_e = \underbrace{(u^{\mathsf{h}}_{\omega_e} - I_H u^{\mathsf{h}}_{\omega_e})|_e}_{a\text{-harmonic function in }\omega_e} + \underbrace{(u^{\mathsf{b}}_{\omega_e} - I_H u^{\mathsf{b}}_{\omega_e})|_e}_{\text{locally computable}}$$

where, $u^{\rm h}_{\omega_e}$ is the a-harmonic part of u decomposed in domain ω_e

3 There exists basis functions v_e^j on each e which solve local spectral problems such that

$$\begin{split} (u_{\omega_e}^{\mathsf{h}} - I_H u_{\omega_e}^{\mathsf{h}})|_e &= \sum_{j=1}^{m-1} c_j v_e^j + O\left(\exp\left(-m^{\frac{1}{d+1}-\epsilon}\right) \|u^{\mathsf{h}}\|_{H^1_a(\omega_e)}\right) \\ \text{where the approximation is in the } \mathcal{H}^{1/2}(e) \text{ norm: the } H^1_a(\Omega) \text{ norm of the } a\text{-harmonic extension of function on } e \\ \text{Key: the restriction of } a\text{-harmonic functions is of low complexity} \end{split}$$

Numerical Examples

Connection to Multiscale Methods in the Literature

Compared to Generalized FEM, MsFEM, GMsFEM ...

- Our method uses a noval edge coupling¹⁷
- Nearly exponential convergence results for rough elliptic equations were achieved via partition of unity (PUM)¹⁸
- \blacksquare Orthogonality of $u^{\rm h}$ and $u^{\rm b}$ preserved
- Noval results for Helmholtz equation

Compared to Variational Multiscale Methods, LOD, Gamblets ...

- We use coarse-fine decomposition as well
- Exponential convergence is achieved

¹⁷Thomas Y Hou and Pengfei Liu. "Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient". In: *Discrete and Continuous Dynamical Systems* 36.8 (2016), pp. 4451–4476.

¹⁸Ivo Babuska and Robert Lipton. "Optimal local approximation spaces for generalized finite element methods with application to multiscale problems". In: *Multiscale Modeling & Simulation* 9.1 (2011), pp. 373–406.

Yifan Chen, Caltech

Computation via Inference

Roadmap

1 Motivation

- Model based versus data driven?
- 2 Gaussian processes for nonlinear PDEs
 - The methodology and algorithm
 - Efficiency: sparse Cholesky factorization
 - Theoretical foundation: consistency and kernel learning
 - Connection to traditional methods and beyond
- 3 Exponentially convergent multiscale methods
 - Coarse and fine scale decomposition
 - Efficient inference of the coarse scale
- 4 Conclusion
 - Summary and prospect

Summary

Solving computational PDEs from an inference perspective

Gaussian processes for nonlinear PDEs

- Generalize collocation methods and BIM
- Automatic and unified framework for solving and learning PDEs
- Near linear complexity sparse Cholesky factorization
- Kernel learning (theory for linear problems)
- Weak form data, Galerkin methods and subsampled measurements

Multiscale methods for rough elliptic and Helmholtz equations

- Coarse-fine scale decomposition
- Edge coupling extending MsFEM
- Coarse scale solution is of low complexity: exponential convergence

References

- Chen, Yifan, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. "Solving and learning nonlinear pdes with gaussian processes". In: Journal of Computational Physics (2021).
- Cockayne, Jon, Chris J Oates, Timothy John Sullivan, and Mark Girolami. "Bayesian probabilistic numerical methods". In: SIAM Review 61.4 (2019), pp. 756–789.
- Schäfer, F, TJ Sullivan, and H Owhadi. "Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity". In: Multiscale Modeling & Simulation 19.2 (2021), pp. 688–730.
- Stein, Michael L. "The screening effect in kriging". In: Annals of statistics 30.1 (2002), pp. 298–323.
- Chen, Yifan, Florian Schaefer, and Houman Owhadi. "Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes". In preparation.
- Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi. "Sparse Cholesky Factorization by Kullback-Leibler Minimization". In: SIAM Journal on Scientific Computing 43.3 (2021), A2019–A2046.
- Owhadi, Houman and Gene Ryan Yoo. "Kernel flows: From learning kernels from data into the abyss". In: Journal of Computational Physics 389 (2019), pp. 22–47.
- Chen, Yifan, Houman Owhadi, and Andrew Stuart. "Consistency of empirical Bayes and kernel flow for hierarchical parameter estimation". In: Mathematics of Computation (2021).
- Målqvist, Axel and Daniel Peterseim. "Localization of elliptic multiscale problems". In: Mathematics of Computation 83.290 (2014), pp. 2583–2603.
- Owhadi, Houman. "Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games". In: SIAM Review 59.1 (2017), pp. 99–149.
- Chen, Yifan and Thomas Y Hou. "Function approximation via the subsampled Poincaré inequality". In: Discrete & Continuous Dynamical Systems 41.1 (2021), p. 169.
- ."Multiscale elliptic PDE upscaling and function approximation via subsampled data". In: Multiscale Modeling & Simulation 20.1 (2022), pp. 188–219.
- Chen, Yifan, Thomas Y Hou, and Yixuan Wang. "Exponential convergence for multiscale linear elliptic PDEs via adaptive edge basis functions". In: Multiscale Modeling & Simulation 19.2 (2021), pp. 980–1010.
- ."Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations". In: arXiv preprint arXiv:2105.04080 (2021).
- Hou, Thomas Y and Pengfei Liu, "Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient". In: Discrete and Continuous Dynamical Systems 36.8 (2016), pp. 4451–4476.
- Babuska, Ivo and Robert Lipton. "Optimal local approximation spaces for generalized finite element methods with application to multiscale problems". In: Multiscale Modeling & Simulation 9.1 (2011), pp. 373–406.

Yifan Chen, Caltech

Backup Slides

Viscous Burgers' Equation

• Viscosity $\nu = 0.02$

$$\begin{cases} \partial_t u + u \partial_s u - \nu \partial_s^2 u = 0, & \forall (s,t) \in (-1,1) \times (0,1]. \\ u(s,0) = -\sin(\pi s), \\ u(-1,t) = u(1,t) = 0. \end{cases}$$

- Shock when $\nu = 0$. Problem harder for smaller ν
- Choose an anisotropic spatio-temperal GP

Numerical Experiments: Viscous Burgers' Equation

• Kernel: $K((s,t),(s',t')) = \exp\left(-20^2|s-s'|^2-3^2|t-t'|^2\right)$

Figure: $N_{\text{domain}} = 2000, N_{\text{boundary}} = 400$

Push to Small Viscosity

Discretize in time first, then apply the methodology to the resulting spatial PDE: dimension of kernel matrices is reduced

Figure: $\nu = 10^{-3}$; number of spatial points 2000; time step size 0.01; Matern7/2 kernel with lengthscale 0.02; use 2 GN iterations

At time t = 1, L^2 accuracy: 10^{-4}

- Observation: accuracy not monotone regarding time t
- Implication: further improvement through time-adaptive kernels

Yifan Chen, Caltech

Numerical Experiments: Inverse Problems

Darcy Flow inverse problems

$$\begin{cases} \min_{u,a} \|u\|_{K}^{2} + \|a\|_{\Gamma}^{2} + \frac{1}{\gamma^{2}} \sum_{j=1}^{I} |u(\mathbf{x}_{j}) - o_{j}|^{2}, \\ \text{s.t.} \quad -\mathsf{div}(\exp(a)\nabla u)(\mathbf{x}_{m}) = 1, \qquad \forall \mathbf{x}_{m} \in (0,1)^{2} \\ u(\mathbf{x}_{m}) = 0, \qquad \forall \mathbf{x}_{m} \in \partial(0,1)^{2}. \end{cases}$$

- \blacksquare Recover a from pointwise measurements of u
- Model (u, a) as independent GPs
- Impose PDE constraints and formulate Bayesian inverse problem

Numerical Experiments: Darcy Flow

• Kernel $K(\mathbf{x}, \mathbf{x}'; \sigma) = \exp\left(-\frac{|\mathbf{x}-\mathbf{x}'|^2}{2\sigma^2}\right)$ for both u and a

44/38

Question: How do θ^{EB} and θ^{KF} behave, as # of data $\to \infty$?

• We answer the question for some specific model of $u^{\dagger}, heta$ and $\mathcal X$

Theory: set-up and theorem

A specific Matérn-like regularity model:

• Domain: $D = \mathbb{T}^d = [0, 1]_{per}^d$

• Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d$, # of data: 2^{qd}

• Kernel
$$K_{ heta} = (-\Delta)^{-t}$$
, and $heta = t$

• Subsampling operator in KF: $\pi X_q = X_{q-1}$

Theorem (Y. Chen, H. Owhadi, A.M. Stuart, 2020) Informal: if $u^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$, $\theta^{\mathsf{EB}} \to s$ and $\theta^{\mathsf{KF}} \to \frac{s - d/2}{2}$ in probability

- Equivalently, u^{\dagger} is the solution to $(-\Delta)^{s/2}u^{\dagger} = f$ for white noise fThus, can learn the *fractional physical laws* underlying the data
- Analysis based on multiresolution decomposition and uniform convergence of random series

Yifan Chen, Caltech

Theory: set-up and theorem

A specific Matérn-like regularity model:

• Domain: $D = \mathbb{T}^d = [0, 1]_{per}^d$

• Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d$, # of data: 2^{qd}

• Kernel
$$K_{ heta} = (-\Delta)^{-t}$$
, and $heta = t$

• Subsampling operator in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Y. Chen, H. Owhadi, A.M. Stuart, 2020) Informal: if $u^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\text{EB}} \to s \text{ and } \theta^{\text{KF}} \to \frac{s-d/2}{2}$$
 in probability

- Equivalently, u^{\dagger} is the solution to $(-\Delta)^{s/2}u^{\dagger} = f$ for white noise fThus, can learn the *fractional physical laws* underlying the data
- Analysis based on multiresolution decomposition and uniform convergence of random series

Yifan Chen, Caltech

Experiments justifying the theory

Patterns in the loss function (our theory can predict!)

- EB: first linear, then blow up quickly
- KF: more symmetric

Experiments justifying the theory

Figure: Left: EB loss; right: KF loss

Patterns in the loss function (our theory can predict!)

- EB: first linear, then blow up quickly
- KF: more symmetric

Next Question: How are the limits $s \ (= 2.5)$ and $\frac{s-d/2}{2} \ (= 1)$ special?

- What is the *implicit bias* of EB and KF algorithms?
- Our strategy: look at their L^2 population errors

Experiment I

• # of data: 2^q ; compute $\mathbb{E}_{\mathbf{u}^{\dagger}} \| u^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$

Figure: L^2 error: averaged over the GP

$$\blacksquare \ \frac{s-d/2}{2} \ (=1)$$
 is the minimal t that suffices for the fastest rate of L^2 error

Yifan Chen, Caltech

Experiment II

• # of data: $2^q, q = 9$; compute $\mathbb{E}_{u^{\dagger}} \| u^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$

Figure: L^2 error: averaged over the GP, for q = 9

• $s \ (= 2.5)$ is the t that achieves the minimal L^2 error in expectation

Take-aways

- For Matérn-like kernel model, EB and KF have different selection bias
 - **EB** selects the θ that achieves the minimal L^2 error in expectation
 - KF selects the minimal θ that suffices for the fastest rate of L^2 error
- More comparisons between EB and KF in our paper
 - Estimate amplitude and lengthscale in $\mathcal{N}(0, \sigma^2(-\Delta + \tau^2 I)^{-s})$
 - Variance of estimators
 - Robustness to model misspecification (important!)
 - Computational cost

Parameter learning: via Bayes or approximation-theoretic?

Representation of ψ_i (Lagrangian dual)

$$\begin{split} \psi_i &= \operatorname{argmin}_{\psi \in H_0^1(\Omega)} \quad \|\psi\|_{H_a^1(\Omega)}^2 \\ &\text{s.t.} \quad \langle \psi, \phi_j \rangle = \delta_{i,j} \ \text{ for } 1 \leq j \leq N \,. \end{split}$$

Local spectral approximation

• The $\mathcal{H}^{1/2}(e)$ norm:

$$\|\tilde{\psi}\|_{\mathcal{H}^{1/2}(e)}^2 := \int_{\Omega} a |\nabla \psi|^2$$

where ψ is the *a*-harmonic extension of $\tilde{\psi}$ on *e* $R_e: (V_{\omega_e}, \|\cdot\|_{H^1_a(\Omega)}) \to (\mathcal{H}^{1/2}(e), \|\cdot\|_{\mathcal{H}^{1/2}(e)})$ such that $R_e v = (v - I_H v)|_e$ where, V_{ω_e} is the space of *a*-harmonic functions in ω_e

For any *a*-harmonic functions v in ω_e and any $\epsilon > 0$, there exists an $N_{\epsilon} > 0$, such that for all $m > N_{\epsilon}$, we can find an (m-1) dimensional space $W_e^m = \operatorname{span} \{ \tilde{v}_e^k \}_{k=1}^{m-1}$ so that

$$\min_{\tilde{v}_e \in W_e^m} \|R_e v - \tilde{v}_e\|_{\mathcal{H}^{1/2}(e)} \le C \exp\left(-m^{\left(\frac{1}{d+1} - \epsilon\right)}\right) \|v\|_{H^1_a(\omega_e)}$$

Proof technique combines [Babuska, Lipton 2011] and C^{α} estimates

Yifan Chen, Caltech