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When I Came to Caltech to Study

Applied and computational math research

Model Based: ODEs/SDEs/PDEs, physics, numerical analysis, ...

Data Driven: machine learning, optimization, statistics, ...

“Now and Future: Model + Data!”

Yifan Chen, Caltech Computation via Inference Candidacy Talk 2/38



Model Computation: Computing with Partial Information

Numerical algorithms designed to use IC/BC/RHS data wisely

Finite difference/element/volume

Spectral methods

Boundary integral methods

Meshless methods, collocation methods

Multiscale methods, numerical homogenization, ...

Inference and ML to automate numerical computation

Gaussian process (GP) and kernel methods for numerical integration

GPs and kernel methods for ODEs, linear PDEs

Information based complexity

Bayes probabilistic numerics, Bayes numerical analysis, UQ

Physics informed ML (Deep Ritz methods, PINNs, SDEs...)

Operator learning (Kernels, Neural Operators, DeepONets), ...
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My PhD Wondering: Computation via Inference

Solving PDEs, surrogate models, inverse problems, via inference

The question: How to transform a given model based computational
question wisely to data science inference question?
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Two Stories

1. Bayes based Gaussian processes approaches

Interpretable, rigorous and unified framework for solving PDEs and
inverse problems

Solving and learning PDEs as a Bayes inference problem

2. Approximation based multiscale methods

Exponentially convergent multiscale approximation for rough elliptic
PDEs and Helmholtz equations

Multiscale ideas lead to exponentially efficient inference
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The Methodology

A nonlinear elliptic PDE Example

Consider the stationary elliptic PDE®
−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Domain Ω ⊂ Rd.
PDE data f, g : Ω→ R.

PDE has a unique strong/classical solution u?.
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A Nonlinear Elliptic PDE: The Methodology1

1 Choose a kernel K : Ω× Ω→ R
Corresponding RKHS U with norm ‖ · ‖

2 Choose some collocation points

X int = {xint
1 , . . . ,x

int
M int} ⊂ Ω

Xbd = {xbd
1 , . . . ,x

bd
Mbd} ⊂ ∂Ω

3 Solve the optimization problem
minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

Generalization of RBF collocation methods and boundary integral
methods (BIM)

1Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. “Solving
and learning nonlinear pdes with gaussian processes”. In: Journal of Computational
Physics (2021).
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Bayes Inference Interpratation of the Methodology

1 Choose a kernel K : Ω× Ω→ R (Choose the prior GP(0,K))

Corresponding RKHS U with norm ‖ · ‖
2 Choose some collocation points (Choose the data/likelihood)

X int = {xint
1 , . . . ,x

int
M int} ⊂ Ω

Xbd = {xbd
1 , . . . ,x

bd
Mbd} ⊂ ∂Ω

3 Solve the optimization problem (Find the “MAP”)
minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

Generalize linear PDEs setting in Bayes probabilistic numerical methods2

2Jon Cockayne, Chris J Oates, Timothy John Sullivan, and Mark Girolami.
“Bayesian probabilistic numerical methods”. In: SIAM Review 61.4 (2019),
pp. 756–789.
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How to Solve: Introducing Slack Variables


minimize

u∈U
‖u‖

s.t. −∆u(xm) + u(xm)3 = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

m (N = Mbd + 2M int)

minimize
z=(zbd,zint,zint

∆ )∈RN



minimize
u∈U

‖u‖

s.t. u(Xbd) = zbd

u(X int) = zint

∆u(X int) = zint
∆

s.t. − zint
∆ + τ(zint) = f(X int)

zbd = g(Xbd)
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How to Solve: Inner optimization

The inner problem is linear

minimize
u∈U

‖u‖

s.t. u(Xbd) = zbd, u(X int) = zint,∆u(X int) = zint
∆

Measurement vector φ := (δXbd , δX int , δX int ◦∆) ∈ (U∗)⊗N
Kernel vector and matrix

K(x,φ) =
(
K(x, Xbd),K(x, X int),∆yK(x, X int)

)
∈ RN

K(φ,φ) =Ñ
K(Xbd, Xbd) K(Xbd, X int) ∆yK(Xbd, X int)
K(X int, Xbd) K(X int, X int) ∆yK(X int, X int)

∆xK(X int, Xbd) ∆xK(X int, X int) ∆x∆yK(X int, X int)

é
∈ RN×N

Minimizer u(x) = K(x,φ)K(φ,φ)−1z
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How to Solve: Representation of the Minimizer

Combine the two level optimization:

Representer theorem

Every minimizer u† can be represented as

u†(x) = K(x,φ)K(φ,φ)−1z†,

where the vector z† ∈ RN is a minimizer of min
z∈RN

zTK(φ,φ)−1z

s.t. F (z) = y

Function F : RN → RM depends on PDE collocation constraints

y contains PDE boundary and RHS data
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Towards A Practical Algorithm

Quadratic optimization with nonlinear constraints

A simple linearization algorithm zk → zk+1 min
z∈RN

zTK(φ,φ)−1z

s.t. F (zk) + F ′(zk)(z− zk) = y.

“Newton’s iteration for the nonlinear PDE”

Poor conditioning of K(φ,φ), and scale imbalance between blocks
Adding scale-aware regularization K(φ,φ) + λdiag(K(φ,φ))
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Numerical Experiments

Nonlinear Elliptic Equation, τ(u) = u3®
−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Truth: d = 2, u?(x) = sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2)

Kernel: K(x,y;σ) = exp
(
− |x−y|

2

2σ2

)
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Figure: Ndomain = 900, Nboundary = 124
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Convergence Study

For τ(u) = 0, u3, use Gaussian kernel with lengthscale σ

L2, L∞ accuracy, compared with Finite Difference (FD)
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Figure: Convergence of the kernel method is fast, since the solution is smooth
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Other Successful Examples

Time dependent viscous Burgers equation

Spatio-temporal GPs approach

Time discretization + spatial GPs: causality considered

Inverse problem: Darcy flow

PDE data + observation data treated in the same manner

Solving PDEs and inverse problems in a unified algorithmic
framework
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Sparse Cholesky Factorization for Ordinary Kernel Matrice

Sparse Cholesky factor for kernel matrices under coarse to fine ordering3

Coarse to fine: max-min ordering

xk = argmaxxid(xi, {xj , 1 ≤ j < k})

with lengthscale lk = d(xk, {xj , 1 ≤ j < k})

3F Schäfer, TJ Sullivan, and H Owhadi. “Compression, inversion, and approximate
PCA of dense kernel matrices at near-linear computational complexity”. In: Multiscale
Modeling & Simulation 19.2 (2021), pp. 688–730.
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Why Sparse? Cholesky Factors and Screening Effects

Let Θ ∈ Rd×d, Θij = k(xi, xj), and X ∼ N (0,Θ)

Cholesky factor of the covariance matrix Θ = LLT

Lij
Ljj

=
Cov[Xi, Xj |X1:j−1]

Var[Xj |X1:j−1]
(i ≥ j)

Cholesky factor of the precision matrix Θ−1 = UUT

Uij
Ujj

= (−1)i 6=j
Cov[Xi, Xj |X1:j−1\{i}]

Var[Xj |X1:j−1\{i}]
(i ≤ j)

Screening effects: x1:j ordered from coarse to fine; scale of xj is lj , then
for certain kernel arsing from PDEs5

Cov[Xi, Xj |X1:j−1] . exp

Å
−d(xi, xj)

lj

ã
4Michael L Stein. “The screening effect in kriging”. In: Annals of statistics 30.1

(2002), pp. 298–323.
5Schäfer, Sullivan, and Owhadi, “Compression, inversion, and approximate PCA of

dense kernel matrices at near-linear computational complexity”.
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Screening Effects with PDE measurements

Recall the kernel matricesÑ
K(Xbd, Xbd) K(Xbd, X int) ∆yK(Xbd, X int)
K(X int, Xbd) K(X int, X int) ∆yK(X int, X int)

∆xK(X int, Xbd) ∆xK(X int, X int) ∆x∆yK(X int, X int)

é
How to order when there are derivative measurements?

Order pointwise measurements from coarse to fine

PDE measurements follow behind (with the same ordering)

Theorem: screening effects hold for such ordering6

Theory: need technical assumptions

The kernel is the Green function of some differential operator
L : Hs

0(Ω)→ H−s(Ω)

Practice: works more generally

6Yifan Chen, Florian Schaefer, and Houman Owhadi. “Sparse Cholesky
Factorization for Solving Nonlinear PDEs via Gaussian Processes”. In preparation.
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Near Linear Complexity by Sparse Cholesky

Ignore correlation beyond d(x, xj) ≥ ρlj (which is O(exp(−ρ)))
Once ordering and sparsity pattern determined, use KL minimization
algorithm7: O(Nρd) memory and O(Nρ2d) time
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Figure: Run 3 GN iterations. Accuracy floor due to finite ρ and regularization

7Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. “Sparse Cholesky
Factorization by Kullback–Leibler Minimization”. In: SIAM Journal on Scientific
Computing 43.3 (2021), A2019–A2046.
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Theoretical Foundation: Consistency

Consistency of the minimizer{
min
u∈U

‖u‖

s.t. PDE constraints at {x1, . . . ,xM} ∈ Ω.

Convergence theory

K is chosen so that

U ⊆ Hs(Ω) for some s > s∗ where s∗ = d/2 + order of PDE.
u? ∈ U .

Fill distance of {x1, . . . ,xM} → 0 as M →∞.

Then as M →∞, u† → u? pointwise in Ω and in Ht(Ω) for t ∈ (s∗, s).
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Theoretical Foundation: Kernel Learning

Bayes approach built in GPs: e.g. Empirical Bayes (EB)

θEB = argmin
θ
‖u†(·, X, θ)‖2Kθ + log detKθ(X,X)

where, u†(·, X, θ) is the solution using collocation points X and
kernel Kθ, and ‖ · ‖Kθ is the RKHS norm for the kernel Kθ

Kernel Flow (KF)8: a variant of cross-validation

θKF = argmin
θ

Eπ
‖u†(·, X, θ)− u†(·, πX, θ)‖2Kθ

‖u†(·, X, θ)‖2Kθ
where, πX is a subsampling of X

Consistency and robustness of EB and KF for learning Matérn-like
kernels: both has large data limit, EB optimal while KF robust9

8Houman Owhadi and Gene Ryan Yoo. “Kernel flows: From learning kernels from
data into the abyss”. In: Journal of Computational Physics 389 (2019), pp. 22–47.

9Yifan Chen, Houman Owhadi, and Andrew Stuart. “Consistency of empirical
Bayes and kernel flow for hierarchical parameter estimation”. In: Mathematics of
Computation (2021).
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Recap

What so far

PDEs treated as nonlinear combination of linear differential measurement
data of a GP, then solved via inference of the GP (MAP estimator)

Framework: choose the GP prior, choose the data, then inference

MAP estimator: generalization of RBF collocation methods and BIM

Efficient algorithm, theoretical consistency, parameter learning

Potential issue in the prior choice

Kernel selection unrelated to the specific PDE

Potential issue in the data choice

Collocation methods, require strong solution
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A Linear Rough Elliptic PDE Example

For a ∈ L∞(Ω), f ∈ L2(Ω):®
−∇ · (a∇u) = f, in Ω,

u = 0, on ∂Ω.

Choose kernel K, apply the methodology:
minimize

u∈U
‖u‖

s.t. −∇ · (a∇u)(xm) = f(xm), for xm ⊂ X int

u(xn) = 0, for xn ⊂ Xbd

Not work, since u ∈ H1
0 (Ω) only

The collocation data we formulate from the PDE is not appropriate!
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Recall the Framework

1 Choose the prior GP(0,K)

2 Choose the data from the computational problem

3 Find the “MAP” / optimal recovery{
minimize

u∈U
‖u‖

s.t. Data of u
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Switch to Choose Weak Data

Choose kernel K that satisfies BC, and choose ψi ∈ H1
0 (Ω), 1 ≤ i ≤ N{

minimize
u∈U

‖u‖

s.t. 〈∇ψi, a∇u〉 = 〈ψi, f〉 for 1 ≤ i ≤ N

If K is the Green function10 of −∇ · (a∇·), then apply Lagrangian dual:

− minimize
v∈span{ψi,1≤i≤N}

Å
1

2
〈∇v, a∇v〉 − 〈v, f〉

ã
Recover Galerkin methods using basis functions ψi, 1 ≤ i ≤ N

10If d > 1, U is the more general Cameron-Martin space rather than RKHS
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Choose Weak Data Dependent on the Green Function

If choosing

span{ψi, 1 ≤ i ≤ N} = (−∇ · (a∇·))−1 span{φi, 1 ≤ i ≤ N}

Then the equivalent inference problem becomes a simple one{
minimize

u∈U
‖u‖

s.t. 〈φi, u〉 known, for 1 ≤ i ≤ N

Some incomplete literature:

φi finite element function of local support O(H)11

φi piecewise constant function of local support O(H)12

Accuracy: O(H) in H1
a(Ω) norm

Localization: ψi can be localized of size O(H log(1/H))
11Axel Målqvist and Daniel Peterseim. “Localization of elliptic multiscale

problems”. In: Mathematics of Computation 83.290 (2014), pp. 2583–2603.
12Houman Owhadi. “Multigrid with rough coefficients and multiresolution operator

decomposition from hierarchical information games”. In: SIAM Review 59.1 (2017),
pp. 99–149.
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Possibility: Subsampled Measurement Functions?

Subsampled measurements: φh,Hi supported in ωh,Hi

The middle between Diracs (h = 0) and h = H

Yifan Chen, Caltech Computation via Inference Candidacy Talk 27/38



Accuracy and Localization for Subsampled Data

Approximation accuracy13: O(Hρd(
H
h )) in the H1

a(Ω) norm

ρd(t) =


1, d < 2»

log(1 + t), d = 2

t
d−2

2 , d > 2 .

Localization14: exponential decay rate of ψh,Hi exhibits non-monotone
behavior regarding h

A trade-off between approximation and localization: ratio h/H matters

13Yifan Chen and Thomas Y Hou. “Function approximation via the subsampled
Poincaré inequality”. In: Discrete & Continuous Dynamical Systems 41.1 (2021),
p. 169.

14Yifan Chen and Thomas Y Hou. “Multiscale elliptic PDE upscaling and function
approximation via subsampled data”. In: Multiscale Modeling & Simulation 20.1
(2022), pp. 188–219.
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Numerical Examples
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Summary for now

Solving PDEs from GP inference perspectives

Choose prior:

Parametric kernel + kernel learning

Green function as the kernel

Choose data:

Collocation data

Weak form data

Question: convergence rates, i.e. inference efficiency?

Depend on the smoothness of the solution

Usually algebraic, unless the solution is smooth

Can we choose the data more thoughtfully to get exponential
convergence, even for nonsmooth solution?
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Consider Hemholtz equation
−∇ · (a∇u)− k2u = f

Local decomposition:
mesh size H = O(1/k),
in each T , u = uh

T + ub
T®−∇ · (a∇uh

T )− k2uh
T = 0, in T

uh
T = u, on ∂T®−∇ · (a∇ub

T )− k2ub
T = f, in T

ub
T = 0, on ∂T

Global function:
uh(x) = uh

T (x), ub(x) = ub
T (x)

when x ∈ T for each T

Coarse-fine decomposition:
u = uh + ub

uh coarse part, ub fine part

T

e

x

x ∈ NH , e ∈ EH , T ∈ TH
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Stick to Case k = 0 and Dirichlet BC for Simplicity

Coarse and fine scale space

u = uh + ub ∈ V h ⊕a V b

V h = {v ∈ H1
0 (Ω) : −∇ · (a∇v) = 0 in every T ∈ TH}

V b = {v ∈ H1
0 (Ω) : v = 0 on ∂T, for every T ∈ TH}

H1
0 (Ω) = V h ⊕a V b

Fine scale part ub solved locally

Coarse scale part uh depends on edge values of u

Recall the inference framework: How to get data of uh?
Choose test function ψ ∈ V h, then

〈ψ, f〉 = 〈∇ψ, a∇u〉 = 〈∇ψ, a∇uh〉

This is a measurement of uh
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How to approximate uh using basis functions?

Theorem (d = 2)15 16

On a mesh of size H = O(1/k), there exist ci, di such that

uh =
∑
i∈I1

ciψ
MsFEM
i +

∑
i∈I2

diψ
Edge
i + O

Ä
exp
Ä
−m 1

d+1−ε
ää

where the approximation is in the energy norm, and

ψMsFEM
i is the MsFEM basis with linear BC #I1 = O(1/H2)

ψEdge
i computed by solving local equation and spectral problems

#I2 = O(2m/H2)

16Yifan Chen, Thomas Y Hou, and Yixuan Wang. “Exponential convergence for
multiscale linear elliptic PDEs via adaptive edge basis functions”. In: Multiscale
Modeling & Simulation 19.2 (2021), pp. 980–1010.

16Yifan Chen, Thomas Y Hou, and Yixuan Wang. “Exponentially convergent
multiscale methods for high frequency heterogeneous Helmholtz equations”. In: arXiv
preprint arXiv:2105.04080 (2021).
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The Detailed Approximation (For Elliptic Case)

1 Interpolation: uh − IHuh vanishes on edge nodes
where: IH : piecewise linear interpolation on the edge (MsFEM)
Put those interpolation functions into basis functions

2 Oversampling: e ⊂ ωe, then on e,

(uh−IHuh)|e = (u−IHu)|e = (uh
ωe − IHuh

ωe)|e︸ ︷︷ ︸
a-harmonic function in ωe

+ (ub
ωe − IHub

ωe)|e︸ ︷︷ ︸
locally computable

where, uh
ωe is the a-harmonic part of u decomposed in domain ωe

3 There exists basis functions vje on each e which solve local spectral
problems such that

(uh
ωe − IHuh

ωe)|e =
∑m−1
j=1 cjv

j
e +O

Ä
exp
Ä
−m 1

d+1−ε
ä
‖uh‖H1

a(ωe)

ä
where the approximation is in the H1/2(e) norm: the H1

a(Ω) norm
of the a-harmonic extension of function on e
Key: the restriction of a-harmonic functions is of low complexity
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Numerical Examples

The coefficient a has high contrast, H = 1/32.
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Connection to Multiscale Methods in the Literature

Compared to Generalized FEM, MsFEM, GMsFEM ...

Our method uses a noval edge coupling17

Nearly exponential convergence results for rough elliptic equations
were achieved via partition of unity (PUM)18

Orthogonality of uh and ub preserved

Noval results for Helmholtz equation

Compared to Variational Multiscale Methods, LOD, Gamblets ...

We use coarse-fine decomposition as well

Exponential convergence is achieved

17Thomas Y Hou and Pengfei Liu. “Optimal Local Multi-scale Basis Functions for
Linear Elliptic Equations with Rough Coefficient”. In: Discrete and Continuous
Dynamical Systems 36.8 (2016), pp. 4451–4476.

18Ivo Babuska and Robert Lipton. “Optimal local approximation spaces for
generalized finite element methods with application to multiscale problems”. In:
Multiscale Modeling & Simulation 9.1 (2011), pp. 373–406.
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Roadmap

1 Motivation
Model based versus data driven?

2 Gaussian processes for nonlinear PDEs
The methodology and algorithm
Efficiency: sparse Cholesky factorization
Theoretical foundation: consistency and kernel learning
Connection to traditional methods and beyond

3 Exponentially convergent multiscale methods
Coarse and fine scale decomposition
Efficient inference of the coarse scale

4 Conclusion
Summary and prospect
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Summary

Solving computational PDEs from an inference perspective

Gaussian processes for nonlinear PDEs

Generalize collocation methods and BIM

Automatic and unified framework for solving and learning PDEs

Near linear complexity sparse Cholesky factorization

Kernel learning (theory for linear problems)

Weak form data, Galerkin methods and subsampled measurements

Multiscale methods for rough elliptic and Helmholtz equations

Coarse-fine scale decomposition

Edge coupling extending MsFEM

Coarse scale solution is of low complexity: exponential convergence
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Schäfer, F, TJ Sullivan, and H Owhadi. “Compression, inversion, and approximate PCA of
dense kernel matrices at near-linear computational complexity”. In: Multiscale Modeling
& Simulation 19.2 (2021), pp. 688–730.

Stein, Michael L. “The screening effect in kriging”. In: Annals of statistics 30.1 (2002),
pp. 298–323.

Chen, Yifan, Florian Schaefer, and Houman Owhadi. “Sparse Cholesky Factorization for
Solving Nonlinear PDEs via Gaussian Processes”. In preparation.

Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi. “Sparse Cholesky Factorization
by Kullback–Leibler Minimization”. In: SIAM Journal on Scientific Computing 43.3
(2021), A2019–A2046.

Owhadi, Houman and Gene Ryan Yoo. “Kernel flows: From learning kernels from data into
the abyss”. In: Journal of Computational Physics 389 (2019), pp. 22–47.

Chen, Yifan, Houman Owhadi, and Andrew Stuart. “Consistency of empirical Bayes and
kernel flow for hierarchical parameter estimation”. In: Mathematics of Computation
(2021).
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Numerical Experiments: Time Dependent Problems

Viscous Burgers’ Equation

Viscosity ν = 0.02
∂tu+ u∂su− ν∂2

su = 0, ∀(s, t) ∈ (−1, 1)× (0, 1].

u(s, 0) = − sin(πs),

u(−1, t) = u(1, t) = 0.

Shock when ν = 0. Problem harder for smaller ν

Choose an anisotropic spatio-temperal GP
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Numerical Experiments: Viscous Burgers’ Equation

Kernel: K((s, t), (s′, t′)) = exp
(
−202|s− s′|2 − 32|t− t′|2

)
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Figure: Ndomain = 2000, Nboundary = 400
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Push to Small Viscosity

Discretize in time first, then apply the methodology to the resulting
spatial PDE: dimension of kernel matrices is reduced
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Figure: ν = 10−3; number of spatial points 2000; time step size 0.01;
Matern7/2 kernel with lengthscale 0.02; use 2 GN iterations

At time t = 1, L2 accuracy: 10−4

Observation: accuracy not monotone regarding time t

Implication: further improvement through time-adaptive kernels
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Numerical Experiments: Inverse Problems

Darcy Flow inverse problems
min
u,a
‖u‖2K + ‖a‖2Γ +

1

γ2

I∑
j=1

|u(xj)− oj |2,

s.t. −div(exp(a)∇u)(xm) = 1, ∀xm ∈ (0, 1)2

u(xm) = 0, ∀xm ∈ ∂(0, 1)2.

Recover a from pointwise measurements of u

Model (u, a) as independent GPs

Impose PDE constraints and formulate Bayesian inverse problem
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Numerical Experiments: Darcy Flow

Kernel K(x,x′;σ) = exp
(
− |x−x

′|2
2σ2

)
for both u and a
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Figure: Ndomain = 400, Nboundary = 100, Nobservation = 50
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Consistency?

Question: How do θEB and θKF behave, as # of data →∞?

We answer the question for some specific model of u†, θ and X
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Theory: set-up and theorem

A specific Matérn-like regularity model:

Domain: D = Td = [0, 1]dper

Lattice data X q = {j · 2−q, j ∈ Jq}
where Jq = {0, 1, ..., 2q − 1}d, # of data: 2qd

Kernel Kθ = (−∆)−t, and θ = t

Subsampling operator in KF: πX q = X q−1

Theorem (Y. Chen, H. Owhadi, A.M. Stuart, 2020)

Informal: if u† ∼ N (0, (−∆)−s) for some s, then as q →∞,

θEB → s and θKF → s− d/2
2

in probability

Equivalently, u† is the solution to (−∆)s/2u† = f for white noise f
Thus, can learn the fractional physical laws underlying the data

Analysis based on multiresolution decomposition and uniform
convergence of random series
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Experiments justifying the theory

How it works in practice?

d = 1, s = 2.5, # of data N = 29, mesh size 2−10
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Figure: Left: EB loss; right: KF loss

Patterns in the loss function (our theory can predict!)

EB: first linear, then blow up quickly
KF: more symmetric
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Selection Bias

Next Question: How are the limits s (= 2.5) and s−d/2
2 (= 1) special?

What is the implicit bias of EB and KF algorithms?

Our strategy: look at their L2 population errors
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Experiment I

# of data: 2q; compute Eu†‖u†(·)− u(·, t,X q)‖2L2
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Figure: L2 error: averaged over the GP

s−d/2
2 (= 1) is the minimal t that suffices for the fastest rate of L2

error
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Experiment II

# of data: 2q, q = 9; compute Eu†‖u†(·)− u(·, t,X q)‖2L2
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Figure: L2 error: averaged over the GP, for q = 9

s (= 2.5) is the t that achieves the minimal L2 error in expectation
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Take-aways

For Matérn-like kernel model, EB and KF have different selection
bias

EB selects the θ that achieves the minimal L2 error in expectation
KF selects the minimal θ that suffices for the fastest rate of L2 error

More comparisons between EB and KF in our paper

Estimate amplitude and lengthscale in N (0, σ2(−∆ + τ2I)−s)
Variance of estimators
Robustness to model misspecification (important!)
Computational cost

Parameter learning: via Bayes or approximation-theoretic?

Yifan Chen, Caltech Computation via Inference Candidacy Talk 51/38



Localization of ψi

Representation of ψi (Lagrangian dual)

ψi = argminψ∈H1
0 (Ω) ‖ψ‖2H1

a(Ω)

s.t. 〈ψ, φj〉 = δi,j for 1 ≤ j ≤ N .
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Local spectral approximation

The H1/2(e) norm:

‖ψ̃‖2H1/2(e) :=

∫
Ω

a|∇ψ|2

where ψ is the a-harmonic extension of ψ̃ on e

Re : (Vωe , ‖ · ‖H1
a(Ω))→ (H1/2(e), ‖ · ‖H1/2(e)) such that

Rev = (v − IHv)|e where, Vωe is the space of a-harmonic functions
in ωe

For any a-harmonic functions v in ωe and any ε > 0, there exists an
Nε > 0, such that for all m > Nε, we can find an (m− 1) dimensional
space Wm

e = span {ṽke}m−1
k=1 so that

min
ṽe∈Wm

e

‖Rev − ṽe‖H1/2(e) ≤ C exp
Ä
−m( 1

d+1−ε)
ä
‖v‖H1

a(ωe)

Proof technique combines [Babuska, Lipton 2011] and Cα estimates
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